Subscribe to GIZMORAMA
 
Subscibe to DEAL OF THE DAY
 


Gizmorama - June 27, 2018

Good Morning,


You know that annoying sound a leaky faucet makes? Well, scientists have finally discovered why it's so annoying, plus they have concocted a way to silence it. This certainly has my attention!

Learn about this and more interesting stories from the scientific community in today's issue.

Until Next Time,
Erin


P.S. Did you miss an issue? You can read every issue from the Gophercentral library of newsletters on our exhaustive archives page. Thousands of issues, all of your favorite publications in chronological order. You can read AND comment. Just click GopherArchives



*-- Scientists tackle the sound of a leaky faucet --*

Why is the sound of a leaky faucet so loud and annoying? Scientists finally have an answer -- and a solution.

The sound made by a dripping faucet isn't produced by the droplet itself, researchers found, but by a tiny pocket of air trapped beneath the water's surface. The miniature bubble causes the water to oscillate, producing a distinct sound.

"A lot of work has been done on the physical mechanics of a dripping tap, but not very much has been done on the sound," Anurag Agarwal, an engineer at the University of Cambridge, said in a news release. "But thanks to modern video and audio technology, we can finally find out exactly where the sound is coming from, which may help us to stop it."

Agarwal, who studies acoustics and aerodynamics as they relate to aerospace and biomedical technologies, was inspired to investigate the phenomenon after a particularly restless night of sleep while visiting a friend with a leak in the roof of his house.

"While I was being kept awake by the sound of water falling into a bucket placed underneath the leak, I started thinking about this problem," Agarwal said. "The next day I discussed it with my friend and another visiting academic, and we were all surprised that no one had actually answered the question of what causes the sound."

Back in the lab, Agarwal set up an experiment featuring an ultra-high-speed camera, microphone and hydrophone. He and his colleagues used the instruments to document and measure leaking water droplets falling into a pool of water.

As many previous experiments have documented, a droplet forms a small cavity, like a crater, when it hits the surface of the water. This indentation quickly recoils as a result of surface tension and a water column rises back up. Due to the speed of the recoil action, a tiny bubble gets trapped beneath the surface of the water.

Until now, most scientists surmised the "plink" sound caused by a dripping faucet could be explained by the impact of the falling droplet.

But the new measurements made by Agarwal showed the cavity-creation process and splash are essentially silent. The hydrophone revealed the trapped air bubble as the true source of the "plink."

"Using high-speed cameras and high-sensitivity microphones, we were able to directly observe the oscillation of the air bubble for the first time, showing that the air bubble is the key driver for both the underwater sound, and the distinctive airborne 'plink' sound," said Phillips, now a PhD student in the engineering department at Cambridge. "However, the airborne sound is not simply the underwater sound field spreading to the surface, as had been previously thought."

A few studies had previously hinted at this possibility, but Agarwal's study is the first to confirm the phenomenon through precise and direct measurement.

The study, published Friday in the journal Scientific Reports, also showed the mechanism is most efficient when the air bubble is closer to the surface. When the bubble triggers oscillations of the surface at the bottom of the cavity, a piston-like mechanism drives sound waves into the air.



*-- New galactic test clarifies existence of dark matter --*

New computer models designed to simulate the distribution of dwarf galaxies surrounding the Milky Way have clarified the existence of dark matter.

The models helped researchers simulate "radial acceleration relation," or RAR, the relationship between the movement of satellite galaxies caused the attraction between galactic matter.

RAR considers the observed circular acceleration of a galaxy and the acceleration explained by the galaxy's distribution of ordinary matter.

The new models account for acceleration caused by dark matter, as well.

"We have now simulated, for the first time, the RAR of dwarf galaxies on the assumption that dark matter exists," Cristiano Porciani, a researcher with the Argelander Institute for Astronomy at the University of Bonn, said in a news release. "It turned out that they behave as scaled-down versions of larger galaxies."

The simulations also allowed scientists to determine how satellite galaxies would most likely behave in the absence of dark matter. Models showed, without dark matter, a satellite galaxy's RAR would be more directly influenced by its distance from the parent galaxy.

The European Space Agency's Gaia spacecraft is currently collecting precise details about size, trajectory and velocity of millions of stars, including stars inside the many dwarf galaxies circling the Milky Way.

Scientists hope the Gaia data can be used to test the predictions of the newest RAR models with the galactic observations. However, astronomers may have to wait for sufficient amounts of data.

"Individual measurements are not enough to test the small differences we have found in our simulations," said Bonn doctoral student Enrico Garaldi. "But repeatedly taking a close look at the same stars improves the measurements every time. Sooner or later it should be possible to determine whether the dwarf galaxies behave like in a universe with dark matter -- or not."

The existence of dark matter is implied by its gravitational influence, but it has yet to be directly detected. Most astronomers agree that dark matter exists. Dark matter's presence solves a variety of astrophysical problems.

However, some scientists have argued alternative theories of gravity could plug some of the same theoretical gaps, making new test for the existence dark matter necessary.

Astronomers detailed the newest proposed test in the journal Physical Review Letters.

***

Missed an Issue? Visit the Gizmorama Archives